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Abstract. Positive-Unlabeled (PU) learning works by considering a set
of positive samples, and a (usually larger) set of unlabeled ones. This
challenging setting requires algorithms to cleverly exploit dependencies
hidden in the unlabeled data in order to build models able to accurately
discriminate between positive and negative samples. We propose to ex-
ploit probabilistic generative models to characterize the distribution of
the positive samples, and to label as reliable negative samples those that
are in the lowest density regions with respect to the positive ones. The
overall framework is flexible enough to be applied on many domains by
leveraging tools provided by years of research from the probabilistic gen-
erative model community. Results on several benchmark datasets show
the performance and flexibility of the proposed approach.

1 Introduction

The classical supervised setting of statistical machine learning [11] aims at induc-
ing models (classifiers) from training sets of labeled data in the form of samples
(xi, yi) i.i.d. drawn from an unknown joint probability distribution p(X, Y ) over
random variables (RVs) X and Y , where Y is the label. For binary classification
(Y ∈ {0, 1}) labels are assumed to be modeled by a Bernoulli distribution and
are associated to positive and negative samples xi.

While nowadays gathering and storing all kinds of data is easier and easier,
having all these data perfectly and reliably labeled is unrealistic for several rea-
sons, which makes classical approaches to learning classifiers inapplicable. First,
the exponential rate at which data is produced contrasts the time required to
produce high quality labels. Moreover, in many fields there are relatively few
labelers effectively trained to produce reliable labels. Lastly, in many real-world
domains it is sometimes unclear what should be considered as a negative sample,
or the generation of negative samples is too expensive or just impossible1. Thus,
the ability to learn predictive models in these scenarios may allow one to exploit
the vast amount of data that are produced, saving precious time and resources.

1 E.g., in process enactment, one would not waist time, money and resources to build
a wrong item just for the purpose of showing how things are not to be done.



In Positive-Unlabeled (PU) learning [6,19], a set P of positive samples, and a
set U of unlabeled samples (each of which may be positive or negative) are avail-
able at training time. So, discriminative information for the negative class must
be found in unlabeled data. PU learning shares similarities to semi-supervised
learning [22], one class classification [24], and outlier detection [4]. Differently
from the first, no negative samples are available at training time and yet it is
required to learn a discriminator between the two classes, in contrast with the
second. Additionally, PU learning is in opposition to the last which is usually
performed in a transductive way to label unlabeled training data only.

PU learning approaches can be roughly grouped into two-staged, extracting
a set of reliable negative samples (RN) from U and then performing supervised
learning, and single-stage, taking all samples in U as negative. For the former,
it becomes crucial to learn a metric that is able to discriminate among classes.
However, each application domain demands a particular formulation for such a
metric. As a consequence, ad hoc algorithmic solutions are often required to cope
with different data representations [31,15]. Especially challenging are categorical
data, since there is no natural distance for them [16]. Indeed, few approaches
have been proposed to deal with this kind of data [3,15] in PU learning.

This work introduces Generative Positive-Unlabeled (GPU) learning, a novel
two-staged approach to PU learning that aims to be general enough to sup-
port very different application domains. It estimates the marginal distribution
pP(X|Y = 1) of the positive samples in P via a generative model, and then
performs inference on such a distribution to select a set of reliable negative sam-
ples from U . The modeled probability density implicitly defines a metric space
among samples, and we assume negative ones to be concentrated where positive
ones are less likely. Generative models such as Probabilistic Graphical Models
(PGMs) [17] have been extensively studied in the literature and offer a powerful
formalism to deal with complex probability distributions over continuous, cate-
gorical, or even structured data [28]. Dealing with a particular domain translates
into choosing a suitable PGM from a consolidated research field. More generally,
given a PGM learned as a density estimator in a certain domain, we exploit it as
a negative sample extractor for partially labeled data. Albeit GPU can deal with
different data representations, here we focus on categorical data, which are han-
dled natively by PGMs. We compared GPU on real data to several PU learners
that have proven to be effective on categorical data.

The paper is organized as follows: in the next Section we provide a brief
review of the literature about PU learning; in Section 3 we introduce and discuss
our GPU approach, while the experimental setting and the experiment results
are presented in Section 4. Conclusions are drawn in Section 5.

2 Related works

PU learning has attracted a great deal of attentions in machine learning and
data mining research. An extensively adopted approach to PU learning is based
on a negative set construction process, that first identifies reliable negative sam-



ples from the unlabeled ones and, then, directly applies traditional classification
methods. Alternative methods following this paradigm differ for how they im-
plement these two steps.

Several proposals adopt distance-based approaches to identify negative sam-
ples, as the farthest unlabeled ones from positive samples. In [29], after selecting
features statistically related to positive samples, the unlabeled set is partitioned
into four sets (reliable/likely/weak negative and likely positive) based on the Eu-
clidean distance. Successively, a multi-level samples learning technique, weighted
SVMs, is exploited to build a classifier. The same approach of first identifying,
characterizing and discriminating features for positive samples is adopted in [15],
where a particular distance function previously designed by the authors is used
to determine reliable negative samples; then, distance learning is applied twice
(on the positive and reliable negative samples) and the resulting distances are
used for k-NN classification.

After having theoretically shown that, under appropriate conditions, P and
U provide sufficient information for learning, in [19] PU learning is posed as
a constrained optimization problem. In such a setting, the set of reliable neg-
ative samples is selected by using a Naive Bayes (NB) classifier and EM. To
the extreme, all the unlabeled samples are treated as negative samples in the
NB classifier initially learned and successively used to extract the set of reliable
negatives from unlabeled data [18]. The dataset so obtained is finally exploited
to learn a classifier using SVM. The obtained augmented set, as representative
of negatives samples, is exploited, along with positive ones, to compute the pa-
rameters of the NB classifier devoted to reliable negative samples identification.
Finally, an EM-based algorithm is exploited to learn the predictive model.

A different policy is the weighted-based approach on unlabeled data exploited
in [9]. The study shows that a classifier trained on positive and unlabeled samples
is able to predict probabilities that differ by only a constant factor from the true
conditional probabilities produced by a model trained on fully labeled positive
and negative samples, provided that the labeled positive samples are chosen
completely at randomly from all positive samples. This result is used in two
different ways: learning from P versus U with adjustment of output probabilities
finally assigned to unlabeled samples, and learning from P and U after double
weighting of U . The basic learning algorithm for each method is an SVM with
a linear kernel whose outputs are post-processed into calibrated probabilities by
fitting a one-dimensional logistic regression function.

Naive Bayes is the classifier extensively adopted for categorical data in the
four methods proposed in [3], namely (Average) Positive Naive Bayes ((A)PNB),
based on Naive Bayes, and (Average) Positive TAN ((A)PTAN), two variants
of the Tree Augmented Naive Bayes model [10] able to deal with positive and
unlabeled samples. The difference lies in the way the prior probability for the
negative class is estimated. For PNB and PTAN this probability is derived di-
rectly from the whole set of unlabeled samples while for APNB and APTAN the
uncertainty is modeled by a Beta distribution.



The above survey shows that many works on PU learning ([19,18,3,15]) have
adopted the text categorization perspective, which is quite peculiar. Indeed,
features are intrinsically categorical, there is a huge number of features compared
to other settings, the representation of samples is very sparse, and there is a
heavy impact of text pre-processing in setting up the classification problem.
Others have faced biomedical problems ([9,29]), where it is typical that databases
specify which genes or proteins are related to some specific consequence, but this
does not mean that all the others are unrelated to that consequence and, on the
contrary, there is a strong interest in identifying which ones actually are [9].

As previously pointed out, although PU learning shares similarities to outlier
detection [4] and to one-class classification [24], it shows difference from these
settings in both the goal to fulfill and in the training set exploited, even in the
case of probability density estimation techniques are used as solving strategies
[23,27,25,12]. Indeed, both methods aim at learning a model able to reject the
new incoming samples using positive training data only. They do not require to
learn a discriminator between the two classes and, hence, no effort to learn a
model for the negative class is done. Intuitively, this type of approach is inferior
because it ignores useful information that is present in the unlabeled samples.

3 Methodology

Let RVs be denoted by upper-case letters, e.g. X, and their values as the corre-
sponding lower-case letters, e.g. x ∼ X. We denote sets of RVs as X, and their
combined values as x. When we refer to a joint probability distribution p(X)
over RVs X, we are either considering the joint probability density function for
continuous RVs, or the probability mass function for discrete RVs, or a hybrid
combination of both in hybrid domains [17,28]. To denote a finite domain of a
discrete RV Xj we introduce the following notation Val(Xj) = {xkj }Kk=1. If D
is a set of samples over RVs X, we indicate with pD(X) the real and unknown
probability distribution that generated the data, while if M indicates a gener-
ative model, pM(X) refers to the probability distribution estimated by such a
model on finite sample set. Disambiguation is provided by context. Generally
one wants the estimate pM(X) to be as close as possible to pD(X). A common
way to measure this closeness is done via the log-likelihood function, or one of
its variants, defined as: `D(M) =

∑
xi∈D log pM(xi) [17].

In the classical PU learning setting, one has a training set D = P ∪ U i.i.d.
from p(X, Y ). Samples in P are provided with a known positive class label, i.e.,
P = {(xi, 1)}mP

i=1 ∼ pP(X|Y = 1). On the other hand, class information, i.e.,
labels, is not provided for samples in U , that is U = {xi}mU

i=1 ∼ pU (X), where
pU (X) is the marginal probability distribution w.r.t. pU (X, Y ). Let D0 (resp. D1)
denote the subset of all negative (resp. positive) samples in D. The aim of PU
learning is to build a discriminator model f : X → Y from D in order to make
accurate prediction about the labels on unseen test data samples. Following [9],
we assume that samples in P are selected completely at random from all positive
samples in D, i.e., pP(X|Y = 1) = pD(X|Y = 1).



3.1 Generative Models for PU learning

Our proposed approach, Generative PU learning (GPU), falls in the category of
two-staged methods for PU learning. First it extracts a set of reliable negative
samples (RN) from U , then RN is employed to perform supervised learning.
In the following we detail our contribution as the first step, discussing possible
approaches for the second one.

As a classical assumption in statistical machine learning we assume pD to be
modeled as a mixture of probability distributions for the positive and negative
class, i.e., pD =

∑
y∈{0,1} p(Y = y)p(X|Y = y) = wD0pD0(X) + wD1pD1(X),

where wD0
(resp. wD1

) denotes the marginal probabilities of the label w.r.t the
negative (resp. positive) class and pD0

(X) (resp. pD1
(X)) denotes the conditional

probability of a sample w.r.t the negative (resp. positive) class. As already said,
as it is common practice in PU learning [9], we assume that the positive samples
in P are highly representative for all positive samples in D1. As an additional
assumption, we consider the distribution generating D0 and D1 to be fairly dis-
tinguishable [1]. That is, we assume that high density regions of pD0

correspond
to low density regions of pD1

and vice versa. While this assumption might ap-
pear too strict for real data, in practice, it is commonly adopted while performing
unsupervised clustering (e.g. gaussian densities must be separable in EM and K-
means). As future research, we plan to investigate how to adapt GPU learning
to more complex learning settings.

The high level idea behind our approach is the following. By correctly mod-
eling the probability distribution of positive samples over RVs X, one is able to
modeling discriminative patterns among samples in the form of probabilistic de-
pendencies among their RVs. If this is done accurately, then a metric space is im-
plicitly defined, associating low probability regions to negative samples and high
probability ones to positive samples. Similar ideas have also been successfully
investigated for applications for anomalous or outlier training samples [27,23].
Algorithm 1 illustrates the general schema of our proposed GPU approach. In
order to estimate pP we fit a generative model, G, over the RVs X of the positive
training set (line 3). We discuss the choice of such an estimator in Section 3.2.
After that, we derive an empirical estimation of the less dense (i.e. less likely)
regions by computing the point-wise log-likelihood of G over the samples in U .
Based on this information we build a set of reliable negative samples, denoted
as N (line 7), we can exploit in the second stage of PU learning. As already
stated, such a schema is general enough to be adapted to different data domains
by leveraging different density estimators. Moreover, by specifying algorithmic
variants to build N and the final discriminator f , one can improve its robustness
and accuracy. We discuss such extensions in the following sections.

3.2 Bayesian Networks and mixtures of trees.

A question on which generative model to employ arises. The main challenge in
learning generative models is balancing the representation expressiveness of the
learned models against the cost of learning and performing inference on them.



Algorithm 1 LearnGPU(P, U)

1: Input: a set P = {(xi, 1)}mP
i=1 of positive samples, and a set U = {xi}mU

i=1 of
unlabeled samples over RVs X ∪ {Y }, with Val(Y ) = {0, 1}.

2: Output: a trained discriminative model leaned on positive samples P and relieable
negative samples N extracted from U

3: G ← learnGenerativeModel(P,X) . learn a generative model G from P
4: L ← {log pG(xi)|xi ∈ U}
5: N ← reliableNegativeSamples(L,P,U)
6: f ← fitClassifier(P,N )
7: return f

Probabilistic Graphical Models (PGMs), like Bayesian Networks (BNs) and
Markov Networks (MNs), are able to model highly complex probability distribu-
tions and have been successfully employed as density estimators. However, exact
inference with them is generally intractable. Since our GPU learning schema only
requires the computation of complete evidence queries, employing BNs in GPU
would lead to tractable inference to build N .

Nevertheless, learning a complex model could still pose a challenge on very
large datasets. Guaranteeing exact and tractable inference, a series of tractable
probabilistic models (TPMs) have been recently proposed: either by restricting
the expressiveness of PGMs by bounding their treewidth, or by exploiting local
structures in a distribution. The limited expressiveness capabilities of TPMs like
mixtures of Bayesian trees (MT) [21] and Cutset Networks [8,7] allow for more
efficient learning schemes. In this work we evaluate GPU by employing both BNs
and MTs to investigate how the model expressiveness influences the estimation
of pP and therefore ultimately the accuracy of the learned discriminator (see
Section 4). In the following we briefly review both models.

BNs are a PGM encoding a probability distribution by means of a directed
acyclic graph (DAG) and a set of weights. In the DAG, nodes correspond to
RVs and edges to dependencies among RVs. Given a set of n RVs X, for each
variable Xi ∈ X, Pai denotes the set of parents on the node Xi in the DAG. The
structure of the DAG, corresponding to a BN B, induces a factorization of the
joint distribution into local factors, that is pB(X) =

∏n
i=1 p(Xi|Pai). Learning

a BN corresponds to learn both the structure and the CPD corresponding to
each local factor from the data. Classical structure learning algorithms search
in the space of BNs guided by a scoring function. While, parameter learning is
obtained by maximum likelihood estimation.

On the side of mixtures of generative models, a very competitive density
estimator algorithm is MT [21]. MT learns a mixture model M whose a distri-

bution factorizes according to pM(X) =
∑k

i=1 λipTi
(X), where the distributions

pTi
, learned with the Chow-Liu algorithm [5], are the mixture components and

λi ≥ 0, with
∑k

i=1 λi = 1 are their coefficients. The Chow-Liu algorithm learns
BNs with the lower treewidth (i.e., nodes have at most one parent in the net-
work), thus leading to efficient learning and inference time. In [21] the best



components and weights are found as (local) likelihood maxima by using EM,
with k fixed in advance.

3.3 Reliable negative sample elicitation.

Once a generative model G has been learned one can exploit the density estima-
tion information G provides in several ways. The most straightforward one would
be to impose a threshold hyperparameter θ such that each sample in U whose
loglikelihood log pG falls under θ can be added to N . However, determining the
best value for θ would require to perform additional hyperparameter optimiza-
tion. To alleviate this issue we propose to implicitly compute it by building N
to comprise the mP samples in U with the lowest log-likelihood score according
to G. In such a way we ensure that the resulting labeled set P ∪ N is balanced
w.r.t the positive and negative class. The risk of including positive samples into
P∪N can be mitigated by adopting a robust classifier in the following supervised
step, whose generalization ability on a test data may also additionally benefit
from the regularization capability of misspecifying some sample labels. Lastly,
we note how density information in the form of the finite set log-likelihoods can
be directly incorporated into the construction of the classifier over P ∪ N (see
next Section).

While we employ the likelihoods to select the most reliable negative samples
from U , they could also be used to select the most reliable positive samples
instead. If one adopts such a strategy, GPU can be turned into an iterative
schema in which at each iteration P is augmented with the samples belonging
to the most dense regions. After a stopping criterion is met, N can be built by
collecting all the samples in U not added to P.

3.4 Supervised classification step.

In principle, every supervised classifier can be employed in GPU after the set N
is constructed. In the empirical evaluation we provide in Section 4 we adopt the
regular implementation of Support Vector Machines (SVMs). Nevertheless, we
now discuss other interesting variants for GPU learning. First, if one builds N
to be unbalanced w.r.t P, it would be possible to adopt the more robust variant
of biased SVMs [14]. Alternatively, if one focuses on iteratively augmenting the
P set only with GPU, then 1-class SVMs [24] could be employed to derive a
max-margin hypersphere for the positive class.

Additionally, the likelihood associated to samples in U could be interpreted
as sample confidence weights. Approaches like that of [30] could be adopted to
learn a weighted classifier over P ∪ U without the need to build N either.

Lastly, our probabilistic generative approach for the first stage can be plugged
in an unsupervised clustering approach for the second stage, as it is done with the
EM algorithm in [19]. A principled end-to-end probabilistic formulation would
allow estimating both pD0

and pD1
iteratively and jointly.



4 Experiments

In this section we empirically evaluate the proposed GPU approach, applying
it to categorical data. We are interested in this kind of data because it poses
some challenges for classical metric based approaches. Since there is no general
consensus on how to build a metric to evaluate categorical data, ad-hoc solu-
tions have been adopted on a domain-wise perspective [16], and only recently
PU learning schemes have been devised for it [15]. On the other hand, PGMs
have been extensively investigated for categorical data and estimating a prob-
ability distribution over discrete RVs is a consolidated practice for extracting
new representations in a domain-agnostic unsupervised way [13,2,26]. As stated
in the previous sections, adapting GPU to other domains reduces to selecting an
appropriate generative toolbox from the probabilistic model literature. Specifi-
cally, we aim at answering the following research questions: Q1) how does GPU
compare to state-of-the-art PU learning approaches? Q2) how does the quan-
tity of available positive examples affect GPU learning? Q3) how much does the
choice of a generative model in estimating pP influence GPU performances?

4.1 Experimental setting

We took 10 datasets publicly available on the UCI machine learning repository2,
derived 3 experimental settings for each, and ran 10-fold cross validations exactly
as in [15]3. The three settings were generated by putting in P 30%, 40%, and
50% labeled samples of the positive class respectively, and in U the remaining
positive samples plus all the negative ones. When the dataset does not describe a
binary classification problem, the two heavily populated classes were considered.
In our experiments, all numerical attributes were discretized into 10 equal-width
bins. Detailed dataset statistics are reported in Table 1.

We evaluate GPU by employing either BNs (GPUBN) or MTs (GPUMT) as
generative models (see Section 3.2). BNs are learnt with the R package bn-
learn4 (release 4.1.1). To learn they structure we employed the simple score-based
hill-climbing algorithm. Concerning parameter estimation, we set the imaginary
sample size to 1. MTs are learnt using the Libra [20] toolkit5 (version 1.1.2). We
imposed the number of components to be 10.

As the classifier for the supervised second stage, we adopt the commonly used
Support Vector Machines (SVMs)6 with an RBF kernel as implemented in scikit-
learn7. The penalty parameter C and the kernel coefficient γ have been optimized
with a cross validation on the following grid C ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}
and γ ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}.
2 http://archive.ics.uci.edu/ml/.
3 The datasets and settings used in [15] were kindly provided by Dino Ienco.
4 http://www.bnlearn.com/.
5 http://libra.cs.uoregon.edu/.
6 For this stage only, categorical data is one-hot encoded.
7 http://scikit-learn.org/.

http://archive.ics.uci.edu/ml/.
http://www.bnlearn.com/
http://libra.cs.uoregon.edu/
http://scikit-learn.org/


Table 1. Dataset statistics. #pos and #unl denote the number of positive and
unlabeled samples respectively.

dataset #attributes % pos #test

30 40 50

#pos #unl #pos #unl #pos #unl

audiology 69 15 79 20 74 26 68 11
breast-cancer 9 54 203 72 185 91 166 29
chess 36 451 2425 601 2275 751 2125 320
dermatology 34 30 136 40 126 50 116 19
hepatitis 19 9 130 12 127 15 124 16
lymph 18 17 111 22 106 28 100 14
nursery 8 1166 6562 1555 6173 1944 5784 859
pima 8 135 556 180 511 225 466 77
soybean 35 25 140 33 132 42 123 18
vote 16 72 319 96 295 120 271 44

We compared GPU with Positive Naive Bayes (PNB), Average Positive Naive
Bayes (APNB), Positive TAN (PTAN) and Average Positive TAN (APTAN) [3]
and Pulce [15] with k = 7. See Section 2 for a description of these methods.

4.2 Results and discussion

Performance on the test set was evaluated using the F-score, defined as F =
2PR/(P + R), where P and R are, respectively, the precision and the recall
obtained by the algorithm. Since the number of positive samples is much larger
than that of negative ones, as in [15] we directed the computation of P , R, and
F-score to the negative samples, differently from their classical setting.

Results are reported in Table 2. We may note that PTAN and APTAN never
won against the other approaches, while the two GPU approaches won 55.3%
of the times (36.8% of the times GPUBN alone), and each GPU approach won
more times than any competitor (GPUBN more than doubled the number of wins
of each competitor). GPU approaches never won on only 2 datasets out of 10;
excluding ties, they lost in only 30% (9/30) of the times. The worst-performing
dataset for GPU approaches, and the only one where they perform neatly worse
than all other competitors, is ‘hepatitis’. This may indicate that for such a
dataset the distributions of the negative and positive class are hard to estimate as
very different densities. Concerning question Q1, therefore, we can say that both
GPUBN and GPUMT are competitive to the current state-of-the-art for categorical
data. On datasets on which GPUBN does not win in all settings, it still performs
comparable or better on settings with larger P sets. Overall, increasing the size
of P improves the model accuracies on in a consistent way. At the same time, on
datasets where both GPU approaches are competitive, they improve over other
methods even with only 30% positive samples available (Q2). Lastly, we observe
that while GPUBN generally outperforms GPUMT, the latter is still comparable
w.r.t. Pulce (see average ranks, Table 2) and overall more accurate than all other
methods. To answer question Q3, we can state that the greater expressiveness of
BNs, allowing better modeling the probability distribution of the positive class,



Table 2. F-score results over the 30 samples.

dataset % GPUBN GPUMT Pulce PNB APNB PTAN APTAN

audiology 30 0.841 0.902 0.745 0.68 0.7 0.66 0.66
audiology 40 0.881 0.804 0.846 0.75 0.74 0.71 0.66
audiology 50 0.955 0.991 0.899 0.80 0.80 0.78 0.71

breast-cancer 30 0.487 0.450 0.534 0.40 0.39 0.43 0.43
breast-cancer 40 0.487 0.513 0.438 0.42 0.40 0.43 0.45
breast-cancer 50 0.536 0.535 0.443 0.42 0.41 0.44 0.44

chess 30 0.671 0.663 0.696 0.58 0.64 0.59 0.64
chess 40 0.715 0.665 0.688 0.58 0.64 0.60 0.64
chess 50 0.698 0.650 0.655 0.58 0.64 0.60 0.64

dermatology 30 0.992 0.834 0.992 0.57 0.57 0.57 0.56
dermatology 40 0.992 0.836 0.992 0.57 0.58 0.57 0.57
dermatology 50 1.000 0.951 0.992 0.59 0.60 0.57 0.58

hepatitis 30 0.576 0.665 0.843 0.87 0.87 0.85 0.86
hepatitis 40 0.632 0.654 0.873 0.88 0.88 0.85 0.85
hepatitis 50 0.784 0.742 0.855 0.88 0.88 0.86 0.85

lymph 30 0.827 0.782 0.851 0.84 0.85 0.79 0.84
lymph 40 0.760 0.795 0.827 0.84 0.83 0.79 0.81
lymph 50 0.801 0.835 0.814 0.86 0.87 0.81 0.82

nursery 30 0.724 0.761 0.739 0.65 0.65 0.56 0.50
nursery 40 0.731 0.762 0.773 0.69 0.69 0.61 0.56
nursery 50 0.949 0.779 0.807 0.69 0.70 0.74 0.44

pima 30 0.552 0.576 0.532 0.49 0.50 0.50 0.50
pima 40 0.555 0.593 0.547 0.49 0.50 0.50 0.51
pima 50 0.547 0.605 0.528 0.49 0.51 0.50 0.52

soybean 30 0.901 0.766 0.738 0.81 0.86 0.80 0.81
soybean 40 0.858 0.852 0.767 0.86 0.86 0.84 0.83
soybean 50 0.928 0.923 0.823 0.92 0.92 0.88 0.86

vote 30 0.849 0.799 0.679 0.62 0.62 0.56 0.55
vote 40 0.906 0.790 0.800 0.71 0.71 0.58 0.54
vote 50 0.873 0.829 0.829 0.77 0.77 0.61 0.56

# wins 14 7 6 5 6 0 0

Avg. F1-score 0.767 0.743 0.751 0.677 0.686 0.653 0.643

30% 0.742 0.720 0.735 0.651 0.665 0.631 0.635
40% 0.752 0.727 0.755 0.679 0.683 0.648 0.642
50% 0.807 0.784 0.764 0.700 0.710 0.679 0.652

Avg. ranking 2.60 3.07 2.97 4.57 4.02 5.45 5.30



Table 3. Number of wins/ties among all the methods.

GPUBN GPUMT Pulce PNB APNB PTAN APTAN avg.

GPUBN — 18/0 18/2 23/0 23/0 25/0 24/0 21.83

GPUMT 12/0 — 13/0 22/0 22/0 25/0 24/0 19.67
Pulce 10/0 17/0 — 22/0 22/0 25/0 24/0 20
PNB 7/0 8/0 8/0 — 5/12 18/2 18/3 10.67
APNB 7/0 8/0 8/0 13/12 — 23/3 21/4 13.33
PTAN 5/0 5/0 5/0 10/2 4/3 — 12/6 6.83
APTAN 6/0 6/0 6/0 9/3 5/4 12/6 — 7.33

is fairly relevant for achieving better performances. Nevertheless, note that for
both GPUBN and GPUMT we employed out of the box PGMs and not invest
too much time optimizing the hyperparameters for their structure and weight
learning algorithms. It is a matter of future works to explore how increasing
a model complexity can degrade its performances, that is when too accurate
probability distribution estimates can lead to overfitting.

5 Conclusions

In Positive-Unlabeled (PU) learning only positive samples are labeled at training
time. PU learning requires algorithms to cleverly exploit dependencies hidden
in the data in order to build models able to discriminate between positive and
negative samples. In this paper, we proposed to exploit probabilistic generative
models for PU learning by characterizing the density distribution for the positive
class. The overall GPU framework is flexible enough to be applied on many
domains by leveraging tools provided by PGMs. Results on several benchmark
datasets empirically confirmed the validity of our new proposed approach.
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